RadioAstron 5-22 GHz observations of 3C 418 and 2013+370

Kirill Sokolovsky (ASC Lebedev/SAI MSU) for the RadioAstron AGN team

Aims

Technical test

- Check amplitude calibration of the Space radio telescope through hybrid imaging
- Test RadioAstron's dual-band imaging capability at 4.8 and 22 GHz (simultaneously)
- Test RadioAstron's ability to image two nearby (15 ${ }^{\circ}$ apart) sources in one experiment

High-resolution imaging

- Determine shape, size and T_{b} of the most compact jet structures (optically-thick cores)

Target selection

Bright VLBI sources with space-ground baselines crossing ground-ground baselines in October 2012

- TXS 2013+370 FSRQ at z=0.859, GeV-bright, 3mm VLBI detected (Lee et al. 2008, AJ, 136, 159), $\beta=12.5 \mathrm{c}$ (MOJAVE)
- 3C 418 FSRQ at $z=1.686$, no GeV detection, 3 mm VLBI detected, $\beta=3.75 \mathrm{c}$

3C 418 and TXS 2013+370

 are close to the Galactic plane at $b=6.0^{\circ}$ and $b=1.2^{\circ}$. Expect interstellar scattering.

WMAP 9-year all-sky 23 GHz map Bennett et al. 2013, ApJS, 208, 20

Array configuration

EVN + Usuda 64m + Evpatoria 70m divided in two subarrays observing at 4.8 and 22 GHz , the Space telescope observing in two bands simultaneously

Space radio telescope

3 C 418 at 4.8 GHz

uv-coverage

3C 418 at 4.8 GHz

3C 418 at 4.8 GHz

Two-component model of 3C 418's core

Size

0.3 mas $=2.6 \mathrm{pc}$ (each)

Flux densities
1.14 \& 0.40 Jy

Tb
1x10^12 K (north) $4 \times 10^{\wedge} 11 \mathrm{~K}$ (south)

3C 418 at 22 GHz
 0.039 mas $=0.33 \mathrm{pc}, 1.17 \mathrm{Jy}, \quad \mathrm{Tb}=5 \times 10 \wedge 12 \mathrm{~K}$

$2013+370$ at 4.8 GHz

$2013+370$ 4.8 GHz core model
 ,

Size

1.5 mas $=12 \mathrm{pc}$

Flux density 1.86 Jy

Tb 8×10^10 K
0.047 mas $=0.37 \mathrm{pc}, \quad 1.22 \mathrm{Jy}, \mathrm{Tb}=2.5 \times 10^{\wedge} 12 \mathrm{~K}$

Conclusions

- Both sources resolved down to tens of mJy level
- Cores of both sources are likely scatterbroadened (4.8 GHz core size 9-30 times larger than 22 GHz size)
- 3C 418 - complex core structure that cannot be recovered with ground-only obs. at 4.8 GHz
- Tb $>10^{\wedge} 12 \mathrm{~K}$ found at 22 GHz

Backup slides...

Structure or scattering?

- If the source size is fully determined by scattering, it's size is expected to scale as $\lambda^{\wedge} 2$
- If the scattering is not important, the core size is expected to scale as $\lambda^{\wedge} 1$ (BK-type jet with SSA)
- $6.2 \mathrm{~cm} / 1.35 \mathrm{~cm}=4.6, \quad(6.2 \mathrm{~cm} / 1.35 \mathrm{~cm})^{\wedge} 2=21.1$
- 3C 418: 0.37mas/0.039mas $=9.5$
- TXS 2013+370: 1.53mas/0.047mas $=32$

Array configuration

Space + 9 (8 for 3C 418 invisible for Hh) ground telescopes collected useful 4.8 GHz data

C-band ground subarray baseline lengths (km)

	Wb	Jp1	On	Tr	\$v	Bd	Ur	Sh	Hh	Ev	Ud
Wb	0	599	601	799	1634	5786	5565	8090	8239	2097	8347
db1	500		101	1388	20.2	6155	6028	8410	8441	2683	8578
On	601	1011	0	637	$10 \$ 0$	5272	5119	7647	8525	1987	7885
Tr	799	1388	637	0	10%	5199	4874	7552	8108	1375	7925
	1634	2082	1080	1070		1201	4127	6760	8697	1716	7074
Bd	5786	6155	5272	5199	$42 \% 1$	0	1452	2749	9832	4839	3293
Ur	5565	6028	5119	4874	4127	1452	0	3249	8852	4152	4303
Sh	8090	8419	7647	7552	6750	2749	3249	0	10160	7067	1680
Hh	8239	8441	8525	8108	86.27	9832	8852	10160	0	7391	11085
Ev	2097	2633	1987	1375	17.6	4839	4152	7067	7391	0	7721
Ud	8347	8578	7885	7925	$70 \% 4$	3293	4303	1680	11085	7721	0

Array configuration

Space + 3 ground telescopes collected useful 22 GHz data
K -band ground subarray baseline lengths (km)

	Ef	Jb2	Ys	Nt	Gb	Ro
Ef	0	699	1352	1644	6335	1413
Jb2	699	0	1411	2247	5719	1427
Ys	1352	1411	0	1616	6124	99
Nt_{t}	1644	2247	1616	0	7416	1711
Gb	6335	5719	6124	7416	0	$6019-$
Po	1413	1427	99	1711	6049	$0-$

Correlation and post-processing

- RA-enabled DiFX (J. Anderson)
- Preliminary correlation done in MPIfR-Bonn
- Fringe search in PIMA (L. Petrov)
- Final DiFX correlation in ASC (slow but flexible)
- Fringe fitting in PIMA including accel. term (rate-rate)
- Imaging/modeling in Difmap
- TODO: repeat correlation using the ASC correlator and SFXC (JIVE), compare results

